Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell Rep ; 38(10): 110503, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1705992

RESUMO

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Metiltransferases , Subfamília C de Receptores Semelhantes a Lectina de Células NK , RNA Helicases , SARS-CoV-2 , Proteínas não Estruturais Virais , COVID-19/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/imunologia , Metiltransferases/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Peptídeos/metabolismo , RNA Helicases/imunologia , Proteínas não Estruturais Virais/imunologia
2.
Sci Rep ; 11(1): 22164, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1514425

RESUMO

The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/uso terapêutico , Interferon Tipo I/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas Atenuadas/uso terapêutico , Proteínas não Estruturais Virais/imunologia , Imunidade Adaptativa , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , Galinhas , Deleção de Genes , Humanos , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/genética
4.
Sci Adv ; 6(28): eabb8097, 2020 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1388430

RESUMO

The prevalence of respiratory illness caused by the novel SARS-CoV-2 virus associated with multiple organ failures is spreading rapidly because of its contagious human-to-human transmission and inadequate globalhealth care systems. Pharmaceutical repurposing, an effective drug development technique using existing drugs, could shorten development time and reduce costs compared to those of de novo drug discovery. We carried out virtual screening of antiviral compounds targeting the spike glycoprotein (S), main protease (Mpro), and the SARS-CoV-2 receptor binding domain (RBD)-angiotensin-converting enzyme 2 (ACE2) complex of SARS-CoV-2. PC786, an antiviral polymerase inhibitor, showed enhanced binding affinity to all the targets. Furthermore, the postfusion conformation of the trimeric S protein RBD with ACE2 revealed conformational changes associated with PC786 drug binding. Exploiting immunoinformatics to identify T cell and B cell epitopes could guide future experimental studies with a higher probability of discovering appropriate vaccine candidates with fewer experiments and higher reliability.


Assuntos
Antivirais/farmacologia , Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Cisteína Endopeptidases/química , Desenho de Fármacos , Pandemias/prevenção & controle , Peptidil Dipeptidase A/química , Pneumonia Viral/prevenção & controle , Glicoproteína da Espícula de Coronavírus/química , Proteínas não Estruturais Virais/química , Enzima de Conversão de Angiotensina 2 , Benzamidas , Benzazepinas , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases/metabolismo , Avaliação Pré-Clínica de Medicamentos , Epitopos de Linfócito B/efeitos dos fármacos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/efeitos dos fármacos , Epitopos de Linfócito T/imunologia , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/imunologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Compostos de Espiro/farmacologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
5.
Signal Transduct Target Ther ; 5(1): 221, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1387195
7.
Signal Transduct Target Ther ; 6(1): 304, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1361622

RESUMO

A comprehensive analysis of the humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential in understanding COVID-19 pathogenesis and developing antibody-based diagnostics and therapy. In this work, we performed a longitudinal analysis of antibody responses to SARS-CoV-2 proteins in 104 serum samples from 49 critical COVID-19 patients using a peptide-based SARS-CoV-2 proteome microarray. Our data show that the binding epitopes of IgM and IgG antibodies differ across SARS-CoV-2 proteins and even within the same protein. Moreover, most IgM and IgG epitopes are located within nonstructural proteins (nsps), which are critical in inactivating the host's innate immune response and enabling SARS-CoV-2 replication, transcription, and polyprotein processing. IgM antibodies are associated with a good prognosis and target nsp3 and nsp5 proteases, whereas IgG antibodies are associated with high mortality and target structural proteins (Nucleocapsid, Spike, ORF3a). The epitopes targeted by antibodies in patients with a high mortality rate were further validated using an independent serum cohort (n = 56) and using global correlation mapping analysis with the clinical variables that are associated with COVID-19 severity. Our data provide fundamental insight into humoral immunity during SARS-CoV-2 infection. SARS-CoV-2 immunogenic epitopes identified in this work could also help direct antibody-based COVID-19 treatment and triage patients.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunidade Humoral , SARS-CoV-2/imunologia , Proteínas não Estruturais Virais/imunologia , COVID-19/mortalidade , Estado Terminal , Intervalo Livre de Doença , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Análise Serial de Proteínas , Taxa de Sobrevida
8.
Emerg Microbes Infect ; 10(1): 1626-1637, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1348038

RESUMO

Coronaviruses (CoVs) can infect a variety of hosts, including humans, livestock and companion animals, and pose a serious threat to human health and the economy. The current COVID-19 pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has killed millions of people. Unfortunately, effective treatments for CoVs infection are still lacking, suggesting the importance of coronavirus vaccines. Our previous work showed that CoV nonstuctural protein 14 (nsp14) functions as (guanine-N7)-methyltransferase (N7-MTase), which is involved in RNA cap formation. Moreover, we found that N7-MTase is well conserved among different CoVs and is a universal target for developing antivirals against CoVs. Here, we show that N7-MTase of CoVs can be an ideal target for designing live attenuated vaccines. Using murine hepatitis virus strain A59 (MHV-A59), a representative and well-studied model of coronaviruses, we constructed N7-MTase-deficient recombinant MHV D330A and Y414A. These two mutants are highly attenuated in mice and exhibit similar replication efficiency to the wild-type (WT) virus in the cell culture. Furthermore, a single dose immunization of D330A or Y414A can induce long-term humoral immune responses and robust CD4+ and CD8+ T cell responses, which can provide full protection against the challenge of a lethal-dose of MHV-A59. Collectively, this study provides an ideal strategy to design live attenuated vaccines for coronavirus by abolishing viral RNA N7-MTase activity. This approach may apply to other RNA viruses that encode their own conservative viral N7-methyltransferase.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas Atenuadas/imunologia , Animais , Vacinas contra COVID-19/administração & dosagem , Citocinas/biossíntese , Humanos , Imunidade Celular , Imunidade Humoral , Imunogenicidade da Vacina , Interferon Tipo I/biossíntese , Masculino , Camundongos , Mutação , Vacinas Atenuadas/administração & dosagem , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
9.
PLoS One ; 16(7): e0253364, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1315884

RESUMO

Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle.


Assuntos
Antivirais/farmacologia , Inibidores de Proteases/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Anticorpos de Cadeia Única/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Células A549 , Complexo Antígeno-Anticorpo , Humanos , Concentração Inibidora 50 , RNA Polimerase Dependente de RNA/imunologia , RNA Polimerase Dependente de RNA/metabolismo , Anticorpos de Cadeia Única/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
10.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1304664

RESUMO

Hepatitis C virus (HCV) is one of the main triggers of chronic liver disease. Despite tremendous progress in the HCV field, there is still no vaccine against this virus. Potential vaccines can be based on its recombinant proteins. To increase the humoral and, especially, cellular immune response to them, more effective adjuvants are needed. Here, we evaluated a panel of compounds as potential adjuvants using the HCV NS5B protein as an immunogen. These compounds included inhibitors of polyamine biosynthesis and urea cycle, the mTOR pathway, antioxidants, and cellular receptors. A pronounced stimulation of cell proliferation and interferon-γ (IFN-γ) secretion in response to concanavalin A was shown for antioxidant N-acetylcysteine (NAC), polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO), and TLR9 agonist CpG ODN 1826 (CpG). Their usage during the immunization of mice with the recombinant NS5B protein significantly increased antibody titers, enhanced lymphocyte proliferation and IFN-γ production. NAC and CpG decreased relative Treg numbers; CpG increased the number of myeloid-derived suppressor cells (MDSCs), whereas neither NAC nor DFMO affected MDSC counts. NAC and DFMO suppressed NO and interleukin 10 (IL-10) production by splenocytes, while DFMO increased the levels of IL-12. This is the first evidence of immunomodulatory activity of NAC and DFMO during prophylactic immunization against infectious diseases.


Assuntos
Acetilcisteína/farmacologia , Adjuvantes Imunológicos/farmacologia , Eflornitina/farmacologia , Hepatite C/imunologia , Imunidade Ativa/efeitos dos fármacos , Proteínas não Estruturais Virais/imunologia , Animais , Proliferação de Células , Células Cultivadas , Feminino , Imunogenicidade da Vacina/efeitos dos fármacos , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Óxido Nítrico/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Vacinas contra Hepatite Viral/imunologia
11.
Cell Rep ; 36(2): 109391, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: covidwho-1303454

RESUMO

The immunogenicity of the SARS-CoV-2 proteome is largely unknown, especially for non-structural proteins and accessory proteins. In this study, we collect 2,360 COVID-19 sera and 601 control sera. We analyze these sera on a protein microarray with 20 proteins of SARS-CoV-2, building an antibody response landscape for immunoglobulin (Ig)G and IgM. Non-structural proteins and accessory proteins NSP1, NSP7, NSP8, RdRp, ORF3b, and ORF9b elicit prevalent IgG responses. The IgG patterns and dynamics of non-structural/accessory proteins are different from those of the S and N proteins. The IgG responses against these six proteins are associated with disease severity and clinical outcome, and they decline sharply about 20 days after symptom onset. In non-survivors, a sharp decrease of IgG antibodies against S1 and N proteins before death is observed. The global antibody responses to non-structural/accessory proteins revealed here may facilitate a deeper understanding of SARS-CoV-2 immunology.


Assuntos
COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas Virais Reguladoras e Acessórias/imunologia , Adulto , Idoso , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Análise Serial de Proteínas
12.
PLoS One ; 16(6): e0253089, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1282298

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, infecting over 43 million people and claiming over 1 million lives, with these numbers increasing daily. Therefore, there is urgent need to understand the molecular mechanisms governing SARS-CoV-2 pathogenesis, immune evasion, and disease progression. Here, we show that SARS-CoV-2 can block IRF3 and NF-κB activation early during virus infection. We also identify that the SARS-CoV-2 viral proteins NSP1 and NSP13 can block interferon activation via distinct mechanisms. NSP1 antagonizes interferon signaling by suppressing host mRNA translation, while NSP13 downregulates interferon and NF-κB promoter signaling by limiting TBK1 and IRF3 activation, as phospho-TBK1 and phospho-IRF3 protein levels are reduced with increasing levels of NSP13 protein expression. NSP13 can also reduce NF-κB activation by both limiting NF-κB phosphorylation and nuclear translocation. Last, we also show that NSP13 binds to TBK1 and downregulates IFIT1 protein expression. Collectively, these data illustrate that SARS-CoV-2 bypasses multiple innate immune activation pathways through distinct mechanisms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , COVID-19/imunologia , Núcleo Celular/imunologia , Fator Regulador 3 de Interferon/imunologia , Proteínas de Ligação a RNA/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Proteínas não Estruturais Virais/imunologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , COVID-19/genética , Núcleo Celular/genética , Células HeLa , Humanos , Fator Regulador 3 de Interferon/genética , NF-kappa B/genética , NF-kappa B/imunologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , Transdução de Sinais/genética , Proteínas não Estruturais Virais/genética
13.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1246477

RESUMO

The ongoing COVID-19 pandemic has caused an unprecedented global health crisis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. Subversion of host protein synthesis is a common strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to shut down host protein synthesis and that SARS-CoV-2 nonstructural protein NSP14 exerts this activity. We show that the translation inhibition activity of NSP14 is conserved in human coronaviruses. NSP14 is required for virus replication through contribution of its exoribonuclease (ExoN) and N7-methyltransferase (N7-MTase) activities. Mutations in the ExoN or N7-MTase active sites of SARS-CoV-2 NSP14 abolish its translation inhibition activity. In addition, we show that the formation of NSP14-NSP10 complex enhances translation inhibition executed by NSP14. Consequently, the translational shutdown by NSP14 abolishes the type I interferon (IFN-I)-dependent induction of interferon-stimulated genes (ISGs). Together, we find that SARS-CoV-2 shuts down host innate immune responses via a translation inhibitor, providing insights into the pathogenesis of SARS-CoV-2.


Assuntos
COVID-19/imunologia , Exorribonucleases/imunologia , Evasão da Resposta Imune , Imunidade Inata , Biossíntese de Proteínas/imunologia , SARS-CoV-2/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Chlorocebus aethiops , Humanos , Células Vero
14.
Cell Rep ; 35(7): 109126, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1222854

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades most innate immune responses but may still be vulnerable to some. Here, we systematically analyze the impact of SARS-CoV-2 proteins on interferon (IFN) responses and autophagy. We show that SARS-CoV-2 proteins synergize to counteract anti-viral immune responses. For example, Nsp14 targets the type I IFN receptor for lysosomal degradation, ORF3a prevents fusion of autophagosomes and lysosomes, and ORF7a interferes with autophagosome acidification. Most activities are evolutionarily conserved. However, SARS-CoV-2 Nsp15 antagonizes IFN signaling less efficiently than the orthologs of closely related RaTG13-CoV and SARS-CoV-1. Overall, SARS-CoV-2 proteins counteract autophagy and type I IFN more efficiently than type II or III IFN signaling, and infection experiments confirm potent inhibition by IFN-γ and -λ1. Our results define the repertoire and selected mechanisms of SARS-CoV-2 innate immune antagonists but also reveal vulnerability to type II and III IFN that may help to develop safe and effective anti-viral approaches.


Assuntos
COVID-19/virologia , SARS-CoV-2/imunologia , Proteínas Virais/imunologia , Animais , Antivirais/farmacologia , Autofagossomos/imunologia , Autofagia/imunologia , COVID-19/imunologia , Linhagem Celular , Chlorocebus aethiops , Exorribonucleases/imunologia , Células HEK293 , Células HeLa , Humanos , Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/metabolismo , Interferons/metabolismo , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/imunologia , SARS-CoV-2/patogenicidade , Células Vero , Proteínas não Estruturais Virais/imunologia
15.
BMC Bioinformatics ; 22(1): 182, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1175288

RESUMO

BACKGROUND: The rapid spread of the COVID-19 demands immediate response from the scientific communities. Appropriate countermeasures mean thoughtful and educated choice of viral targets (epitopes). There are several articles that discuss such choices in the SARS-CoV-2 proteome, other focus on phylogenetic traits and history of the Coronaviridae genome/proteome. However none consider viral protein low complexity regions (LCRs). Recently we created the first methods that are able to compare such fragments. RESULTS: We show that five low complexity regions (LCRs) in three proteins (nsp3, S and N) encoded by the SARS-CoV-2 genome are highly similar to regions from human proteome. As many as 21 predicted T-cell epitopes and 27 predicted B-cell epitopes overlap with the five SARS-CoV-2 LCRs similar to human proteins. Interestingly, replication proteins encoded in the central part of viral RNA are devoid of LCRs. CONCLUSIONS: Similarity of SARS-CoV-2 LCRs to human proteins may have implications on the ability of the virus to counteract immune defenses. The vaccine targeted LCRs may potentially be ineffective or alternatively lead to autoimmune diseases development. These findings are crucial to the process of selection of new epitopes for drugs or vaccines which should omit such regions.


Assuntos
Proteoma , SARS-CoV-2/genética , Homologia de Sequência , Vacinas contra COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Fosfoproteínas/imunologia , Filogenia , RNA Polimerase Dependente de RNA/imunologia , Fatores de Risco , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas não Estruturais Virais/imunologia
16.
Virol J ; 18(1): 54, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1133601

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic remains ongoing around the world, including in areas where dengue is endemic. Dengue and COVID-19, to some extent, have similar clinical and laboratory features, which can lead to misdiagnosis, delayed treatment and patient's isolation. The use of rapid diagnostic tests (RDT) is easy and convenient for fast diagnosis, however there may be issues with cross-reactivity with antibodies for other pathogens. METHODS: We assessed the possibility of cross-reactivity between SARS-CoV-2 and dengue antibodies by: (1) testing five brands of COVID-19 IgG / IgM RDTs on 60 RT-PCR-confirmed dengue samples; (2) testing 95 RT-PCR-confirmed COVID-19 samples on dengue RDT; and (3) testing samples positive for COVID-19 IgG and/or IgM on dengue RDT. RESULTS: We observed a high specificity across all five brands of COVID-19 RDTs, ranging from 98.3 to 100%. Out of the confirmed COVID-19 samples, one patient tested positive for dengue IgM only, another tested positive for dengue IgG only. One patient tested positive for dengue IgG, IgM, and NS1, suggesting a co-infection. In COVID-19 IgG and/or IgM samples, 6.3% of COVID-19 IgG-positive samples also tested positive for dengue IgG, while 21.1% of COVID-19 IgM-positive samples also tested positive for dengue IgG. CONCLUSION: Despite the high specificity of the COVID-19 RDT, we observed cross-reactions and false-positive results between dengue and COVID-19. Dengue and COVID-19 co-infection was also found. Health practitioners in dengue endemic areas should be careful when using antibody RDT for the diagnosis of dengue during the COVID-19 pandemic to avoid misdiagnosis.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , Reações Cruzadas/imunologia , Vírus da Dengue/imunologia , Dengue/diagnóstico , SARS-CoV-2/imunologia , Adolescente , Adulto , Criança , Diagnóstico Diferencial , Testes Diagnósticos de Rotina , Reações Falso-Positivas , Feminino , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Indonésia , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Proteínas não Estruturais Virais/imunologia , Adulto Jovem
17.
PLoS Pathog ; 17(2): e1008690, 2021 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1105832

RESUMO

Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs exert anti-viral functions due to their involvement in protein synthesis shut off and recruitment of innate immune signaling intermediates. The largest RNA viruses, coronaviruses, impose great threat to public safety and animal health; however, the significance of SGs in coronavirus infection is largely unknown. Infectious Bronchitis Virus (IBV) is the first identified coronavirus in 1930s and has been prevalent in poultry farm for many years. In this study, we provided evidence that IBV overcomes the host antiviral response by inhibiting SGs formation via the virus-encoded endoribonuclease nsp15. By immunofluorescence analysis, we observed that IBV infection not only did not trigger SGs formation in approximately 80% of the infected cells, but also impaired the formation of SGs triggered by heat shock, sodium arsenite, or NaCl stimuli. We further demonstrated that the intrinsic endoribonuclease activity of nsp15 was responsible for the interference of SGs formation. In fact, nsp15-defective recombinant IBV (rIBV-nsp15-H238A) greatly induced the formation of SGs, along with accumulation of dsRNA and activation of PKR, whereas wild type IBV failed to do so. Consequently, infection with rIBV-nsp15-H238A strongly triggered transcription of IFN-ß which in turn greatly affected rIBV-nsp15-H238A replication. Further analysis showed that SGs function as an antiviral hub, as demonstrated by the attenuated IRF3-IFN response and increased production of IBV in SG-defective cells. Additional evidence includes the aggregation of pattern recognition receptors (PRRs) and signaling intermediates to the IBV-induced SGs. Collectively, our data demonstrate that the endoribonuclease nsp15 of IBV interferes with the formation of antiviral hub SGs by regulating the accumulation of viral dsRNA and by antagonizing the activation of PKR, eventually ensuring productive virus replication. We further demonstrated that nsp15s from PEDV, TGEV, SARS-CoV, and SARS-CoV-2 harbor the conserved function to interfere with the formation of chemically-induced SGs. Thus, we speculate that coronaviruses employ similar nsp15-mediated mechanisms to antagonize the host anti-viral SGs formation to ensure efficient virus replication.


Assuntos
COVID-19/virologia , Grânulos Citoplasmáticos/metabolismo , Endorribonucleases/imunologia , Endorribonucleases/metabolismo , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo , COVID-19/metabolismo , Linhagem Celular , Coronavirus/imunologia , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/virologia , Humanos , Interferon beta/imunologia , Interferon beta/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais , Replicação Viral/fisiologia
18.
Curr Mol Med ; 22(1): 50-66, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1099962

RESUMO

The proteins of coronavirus are classified as non-structural, structural, and accessory. There are 16 non-structural viral proteins besides their precursors (1a and 1ab polyproteins). The non-structural proteins are named nsp1 to nsp16, and they act as enzymes, coenzymes, and binding proteins to facilitate the replication, transcription, and translation of the virus. The structural proteins are bound to the RNA in the nucleocapsid (N- protein) or to the lipid bilayer membrane of the viral envelope. The lipid bilayer proteins include the membrane protein (M), an envelope protein (E), and spike protein (S). Besides their role as structural proteins, they are essential for the host cells' binding and invasion. The SARS-CoV-2 contains six accessory proteins which participate in the viral replication, assembly and virus-host interactions. The SARS-CoV-2 accessory proteins are orf3a, orf6, orf7a, orf7b, orf8, and orf10. The functions of the SARS-CoV-2 are not well known, while the functions of their corresponding proteins in SARS-CoV are either well known or poorly studied. Recently, the Oxford University and Astrazeneca, Pfizer and BioNTech have made SARS-CoV-2 vaccines by targeting the spike protein gene. The US Food and Drug Administration (FDA) and the health authorities of the United Kingdom have approved and started conducting vaccinations using the Pfizer and BioNTech mRNA vaccine. Also, The FDA of the USA has approved the use of two monoclonal antibodies produced by Regeneron pharmaceuticals to target the spike protein for treating COVID-19. The SARS-CoV-2 proteins can be used for the diagnosis, as drug targets and in vaccination trials for COVID-19. In future COVID-19 research, more efforts should be made to elaborate the functions and structure of the SARS-CoV- 2 proteins so as to use them as targets for COVID-19 drugs and vaccines. Special attention should be paid to extensive research on the SARS-CoV-2 nsp3, orf8, and orf10.


Assuntos
Antivirais/farmacologia , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2/química , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Antígenos Virais/imunologia , COVID-19/imunologia , Desenho de Fármacos , Humanos , Imunoterapia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Desenvolvimento de Vacinas , Proteínas não Estruturais Virais/efeitos dos fármacos , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/fisiologia , Proteínas Virais/fisiologia , Proteínas Virais Reguladoras e Acessórias/efeitos dos fármacos , Proteínas Virais Reguladoras e Acessórias/imunologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Proteínas Estruturais Virais/efeitos dos fármacos , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/fisiologia , Vacinas de mRNA , Tratamento Farmacológico da COVID-19
19.
Cell Host Microbe ; 29(3): 489-502.e8, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1064930

RESUMO

The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (Δ500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-ß levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-ß responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Interferon Tipo I/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Proteínas não Estruturais Virais/genética , Células A549 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , COVID-19/sangue , Linhagem Celular , Criança , Pré-Escolar , Chlorocebus aethiops , Feminino , Deleção de Genes , Genômica , Células HEK293 , Humanos , Lactente , Interferon Tipo I/sangue , Interferon beta/sangue , Interferon beta/metabolismo , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Genética Reversa , Células Vero , Proteínas não Estruturais Virais/imunologia , Adulto Jovem
20.
Virology ; 556: 73-78, 2021 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1049897

RESUMO

The need to stem the current outbreak of SARS-CoV-2 responsible for COVID-19 is driving the search for inhibitors that will block coronavirus replication and pathogenesis. The coronavirus 3C-like protease (3CLpro) encoded in the replicase polyprotein is an attractive target for antiviral drug development because protease activity is required for generating a functional replication complex. Reagents that can be used to screen for protease inhibitors and for identifying the replicase products of SARS-CoV-2 are urgently needed. Here we describe a luminescence-based biosensor assay for evaluating small molecule inhibitors of SARS-CoV-2 3CLpro/main protease. We also document that a polyclonal rabbit antiserum developed against SARS-CoV 3CLpro cross reacts with the highly conserved 3CLpro of SARS-CoV-2. These reagents will facilitate the pre-clinical evaluation of SARS-CoV-2 protease inhibitors.


Assuntos
Técnicas Biossensoriais/métodos , Proteases 3C de Coronavírus/metabolismo , Soros Imunes/imunologia , Luciferases/metabolismo , SARS-CoV-2/metabolismo , Animais , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/imunologia , Reações Cruzadas , Luciferases/genética , Inibidores de Proteases/farmacologia , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA